
Stacked Sequential Learning

William W. Cohen
Center for Automated Learning & Discovery

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
wcohen@cs.cmu.edu

Abstract

We describe a new sequential learning scheme
called “stacked sequential learning”. Stacked
sequential learning is a meta-learning algo-
rithm, in which an arbitrary base learner is
augmented so as make it aware of the la-
bels of nearby examples. We evaluate the
method on several “sequential partitioning
problems”, which are characterized by long
runs of identical labels. We demonstrate
that on these problems, sequential stack-
ing consistently improves the performance of
non-sequential base learners; that sequential
stacking often improves performance of learn-
ers (such as CRFs) that are designed specifi-
cally for sequential tasks; and that a sequen-
tially stacked maximum-entropy learner gen-
erally outperforms CRFs.

1 Introduction

In this paper, we will consider the application of se-
quential probabilistic learners to sequential partition-
ing tasks. Sequential partitioning tasks are sequential
classification tasks characterized by long runs of iden-
tical labels: examples of these tasks include document
analysis, video segmentation, and gene finding.

Motivated by some anomolous behavior observed for
one sequential learning method on a particular par-
titioning task, we will derive a new learning scheme
called stacked sequential learning . Like boosting,
stacked sequential learning is a meta-learning method,
in which an arbitrary base learner is augmented—in
this case, by making the learner aware of the labels of
nearby examples. Sequential stacking is simple to im-
plement, can be applied to virtually any base learner,
and imposes only a constant overhead in training time:
in our implementation, the sequentially stacked ver-

sion of the base learner A trains about seven times
more slowly than A.

In experiments on several partitioning tasks, sequen-
tial stacking consistently improves the performance
of non-sequential base learners. More surprisingly,
sequential stacking also often improves performance
of learners specifically designed for sequential tasks,
such as conditional random fields and discriminatively
trained HMMs. Finally, on our set of benchmark prob-
lems, a sequentially stacked maximum-entropy learner
generally outperforms conditional random fields.

2 Motivation

2.1 A Task for Which MEMMs Fail

To motivate the novel learning method that we will
describe below, we will first analyze the behavior of
one well-known sequential learner on a particular real-
world problem. In a recent paper [2], we evaluated a
number of sequential learning methods on the prob-
lem of recognizing the “signature” section of an email
message. Each line of an email message was repre-
sented with a set of hand-crafted features, such as “line
contains a possible phone number”, “line is blank”,
etc. Each email message was represented as a vector x
of feature-vectors x1, . . . , xn, where xi is the feature-
vector representation of the i-th line of the message.
A line was labeled as positive if it was part of a signa-
ture section, and negative otherwise. The labels for a
message were represented as another vector y, where
yi is the label for line i.

The dataset contains about 33,013 labeled lines from
617 email messages. About 10% of the lines are la-
beled “positive”. Signature sections always fall at the
end of a message, usually in the last 10 lines. In the
experiments below, the data was split into a training
set (of 438 sequences/emails), and a test set with the
remaining sequences, and we used the “basic” feature
set from Carvalho & Cohen.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Stacked Sequential Learning

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Center for Automated Learning &
Discovery,5000 Forbes Ave,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We describe a new sequential learning scheme called stacked sequential learning". Stacked sequential
learning is a meta-learning algo- rithm, in which an arbitrary base learner is augmented so as make it
aware of the la- bels of nearby examples. We evaluate the method on several sequential partitioning
problems", which are characterized by long runs of identical labels. We demonstrate that on these
problems, sequential stack- ing consistently improves the performance of non-sequential base learners;
that sequential stacking often improves performance of learn- ers (such as CRFs) that are designed speci?-
cally for sequential tasks; and that a sequen- tially stacked maximum-entropy learner gen- erally
outperforms CRFs

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The complete dataset is represented as a set S of
examples S = {(x1,y1), . . . , (xt,yt), . . . , (xm,ym)}.
Sequential learning is the problem of learning, from
such a dataset, a sequential classifier—i.e., a func-
tion f such that f(x) produces a vector of class labels
y. Clearly, any ordinary non-sequential learning algo-
rithm can be used for sequential learning, by ignoring
the sequential nature of the data1.

In the previous paper [2], we reported results for
several non-sequential and sequential learners on
the signature-detection problem, including a non-
sequential maximum entropy learner [1] (henceforth
ME) and conditional random fields [8] (henceforth
CRFs). Another plausible sequential learning method
to apply to this task are maximum-entropy Markov
models (MEMMs) [9], also called maximum-entropy
taggers [11], conditional Markov models [7], and recur-
rent sliding windows [4]. In this model, the conditional
probability of a label sequence y given an instance se-
quence x is defined to be

Pr(y|x) =
∏

i

Pr(yi|yi−1, xi) (1)

The local model Pr(yi|yi−1, xi) is learned as follows.
First one constructs an extended dataset , which is
a collection of non-sequential examples of the form
((xi, yi−1), yi), where (xi, yi−1) denotes an instance in
which the original feature vector for xi is augmented
by adding a feature for yi−1. We will call (xi, yi−1)
an extended instance, and call yi−1 a history feature.
Note that yi is the class label for the extended example
((xi, yi−1), yi).

After constructing extended instances, one trains a
maximum-entropy conditional model from the ex-
tended dataset. Inference is done by using a Viterbi
search to find the best label sequence y according to
Equation 1.

MEMMs have a number of nice properties. Rela-
tive the more recently-proposed CRF model, MEMMs
are easy to implement, and (since no inference is
done at learning time) relatively quick to train.
MEMMs can also be easily generalized by replacing
the local model with one that uses a longer “his-
tory” of k previous labels—i.e., a model of the form
Pr(yi|yi−1, . . . , yi−k, xi)—and replacing the Viterbi
search with a beam search. Such a learner scales well
with the history size and number of possible classes y.

1Specifically, one could build a dataset of non-sequential
examples (xt,i, yt,i) from S, and use it to train a classifier
g that maps a single feature-vector x to a label y. One
can then use g to classify each instance xi in the vector
x = 〈x1, . . . , xn〉 separately, ignoring its sequential posi-
tion, and append the resulting predictions yi into an out-
put vector y.

Method Noise Error Min Error
ME 3.47 3.20
MEMM 31.83 4.26
CRF 1.17 1.17
MEMM 10% 2.18 2.18
CRF 10% 1.85 1.84

Table 1: Performance of several sequential learners on
the signature-detection problem.

Unfortunately, as Table 1 shows, MEMMs perform
extremely badly on the signature-detection problem,
with an error rate many times the error rate of CRFs.
In fact, on this problem, MEMMs perform much worse
than the non-sequential maximum-entropy learner
ME, or even the default error rate.2

The MEMM’s performance is better if one is allowed
to change the threshold used to classify examples. Let-
ting p̂i be the probability Pr(yi = +|xi, yi−1) as com-
puted by the local model in the Viterbi classification
of x, we computed, for each learner, the threshold θ
such the rule [(yi = +) ⇔ (p̂i > θ)] gives the lowest
test error rate. The column labeled “Min Error” in
Table 1 gives this result. (Of course, since the compu-
tation of θ was done using the test data, this is only
a lower bound on attainable error rate.) The “Min
Error” for MEMMs is much lower than the error for
MEMMs with the default threshold, but still higher
than either non-sequential ME or CRFs.

2.2 Analysis

The literature suggests several possible explanations
for these results. For instance, Lafferty et al [8] show
that MEMMs can represent only a proper subset of the
distributions that can be represented by CRFs (the
“label bias problem”). However, “label bias” does
not explain why MEMMs perform worse than non-
sequential ME, since MEMMs clearly can represent a
proper superset of the distributions that ME can rep-
resent. Klein and Manning [7] describe an “observa-
tion bias problem”, in which MEMMs give too little
weight to the history features. Error analysis on the
signature-detection task suggests that the opposite is
happening here: relative to the weights assigned by
a CRF, MEMM is actually giving too much weight
to the history features, and too little to the features
from xi. The conjecture that the history features are

2We used the implementations of ME, MEMMs, and
CRFs provided by Minorthird [10], which uses Gaussian
priors and a limited-memory quasi-Newton method for op-
timization. A limit of 50 optimization iterations was also
used, although this limit does not substantially change the
result of this section.

being overweighted is also consistent with the empiri-
cal observation that on many test email messages, the
learned MEMM makes a false positive classification
somewhere before the signature starts, and then “gets
stuck” and marks every subsequent line as part of a
signature.

To test this theory, we encouraged the MEMM to
downweight the history features by adding noise to
the training (not test) data, as follows. For each train-
ing email/sequence x, we consider each feature-vector
xi ∈ x in turn, and toss a coin with a 10% chance of
landing “heads”. If the coin flip comes up “heads”, we
swap xi with some other feature-vector xj chosen uni-
formly from x. Adding this “sequence noise” almost
doubles the error rate for CRFs, but greatly reduces
the error rate for MEMMs. (Of course, this type of
noise does not affect non-sequential ME.) This exper-
iment further supports the hypothesis that MEMM is
overweighting history features.

3 Stacked Sequential Learning

3.1 Description

The poor results for MEMM described above can be
intuitively explained as a mismatch between the data
used to train the local models of the MEMM, and the
data used to test the model. With noise-free train-
ing data, it is always the case that a signature line
is followed by more signature lines, so it is not espe-
cially surprising that the MEMM’s local model tends
to weight this feature heavily. However, this regularity
need not always hold for the test data, which is drawn
from predictions made by the local model on different
examples.

In theory, of course, this training/test mismatch is
compensated for by the Viterbi search, which is in turn
driven by the confidence estimates produced by the lo-
cal model. However, if the assumptions of the theory
are violated (for instance, if there are high-order in-
teractions not accounted for by the maximum-entropy
model), the local model’s confidence estimates may be
incorrect, leading to poor performance.

To correct the training/test mismatch, it is sufficient
to modify the the extended dataset so that the true
previous class yi−1 in an extended instance (xi, yi−1)
is replaced by a predicted previous class ŷi−1. Below
we will outline one way to do this.

Assume that one is given a sample S = {(xt,yt)} of
size m, and a sequential learning algorithm A. Pre-
vious work on a meta-learning method called stacking
[13] suggests the following scheme for constructing a
sample of (x, ŷ) pairs in which ŷ is a vector of “pre-

Stacked Sequential Learning.

Parameters: a history size Wh, a future size Wf , and a
cross-validation parameter K.

Learning algorithm: Given a sample S = {(xt,yt)}, and a
sequential learning algorithm A:

1. Construct a sample of predictions ŷt for each xt ∈ S
as follows:

(a) Split S into K equal-sized disjoint subsets
S1, . . . , SK

(b) For j = 1, . . . ,K, let fj = A(S − Sj)
(c) Let Ŝ = {(xt, ŷt) : ŷt = fj(xt) and xt ∈ Sj}

2. Construct an extended dataset S′ of instances (x′t,yt)
by converting each xt to x′t as follows: xt

′ =
〈x′1, . . . , x′`t〉 where x′i = (xi, ŷi−Wh , . . . , ŷi+Wf) and
ŷi is the i-th component of ŷt, the label vector paired

with xt in Ŝ.

3. Return two functions: f = A(S) and f ′ = A(S′).

Inference algorithm: given an instance vector x:

1. Let ŷ = f(x)

2. Carry out Step 2 above to produce an extended in-
stance x′ (using ŷ in place of ŷt).

3. Return f ′(x′).

Table 2: The sequential stacking meta-learning algo-
rithm.

dicted” class-labels for x. First, partition S into K
equal-sized disjoint subsets S1, . . . , SK , and learn K
functions f1, . . . , fK , where fj = A(S − Sj). Then,
construct the set

Ŝ = {(xt, ŷt) : ŷ = fj(xt) and xt ∈ Sj}
In other words, Ŝ pairs each xt with the ŷt associated
with performing a K-fold cross-validation on S. The
intent of this method is that ŷ is similar to the pre-
diction produced by an f learned by A on a size-m
sample that does not include x.

This procedure is the basis of the meta-learning algo-
rithm of Table 2. This method begins with a sample S
and a sequential learning method A. In the discussion
below we will assume that A is ME, used for sequential
data.

Using S, A, and cross-validation techniques, one first
pairs with each xt ∈ S the vector ŷt associated with
performing cross-validation with ME. These predic-
tions are then used to create a dataset S′ of extended
instances x′, which in the simplest case, are simply
vectors composed of instances of the form (xi, ŷi−1),
where ŷi−1 is the (i− 1)-th label in ŷ.

The extended examples S′ are then used to train

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18 20

E
rr

or
 r

at
e

Varying history size
Varying window size
Vary window - CRF

Maxent baseline
CRF baseline

Figure 1: Stacked sequential learning, varying history
size (Wh) and window size (W = Wh = Wf). The
base learning algorithm A is maximum-entropy (ME),
unless otherwise stated.

a model f ′ = A(S′). If A is the non-sequential
maximum-entropy learner, this step is similar to the
process of building a “local model” for an MEMM: the
difference is that the history features added to xi are
derived not from the true history of xi, but are (ap-
proximations of) the off-sample predictions of an ME
classifier.

At inference time, f ′ must be run on examples that
have been extended by adding prediction features ŷ.
To keep the “test” distribution similar to the “train-
ing” distribution, f will not be used as the inner loop of
a Viterbi or beam-search process; instead, the predic-
tions ŷ are produced using a non-sequential maximum-
entropy model f that is learned from S. The algorithm
of Table 2 simply generalizes this idea from ME to an
arbitrary sequential learner, and from a specific his-
tory feature to a parameterized set of features.

In our experiments, we introduced one small but im-
portant refinement: each “history feature” ŷ added to
an extended example is not simply a predicted class,
but a numeric value indicating the log-odds of that
class. This makes accessible to f ′ the confidences pre-
viously used by the Viterbi search.

3.2 Initial results

We applied stacked sequential learning with ME as
the base learner (henceforth s-ME) to the signature-
detection dataset. We used K = 5, Wh = 1, and
Wf = 0. (Notice that with these parameters the ex-
tended instance constructed from xi includes ŷi as well
as ŷi−1.) The s-ME method obtains an error rate of
2.63% on the signature-detection task. This is less
than the baseline ME method (3.20%) but still higher

than CRFs (1.17%). However, three extensions to s-
ME are straightforward to implement, and dramati-
cally improve performance.

More past labels. Like MEMMs, s-ME can efficiently
handle a large “history” of previous predicted classes.
In fact, s-ME can handle large histories more easily
than MEMMs, as it does not need to resort to beam
search for inference—the only impact of more history
features is to add new features to the extended in-
stances. On the signature-detection task, increasing
the history size reduces error to 2.38% (with a history
size of 11) as is shown in Figure 1.

Past and future labels. Unlike MEMMs, the extended
instance for xi can include predicted classes not only
of previous instances, but also of “future” instances—
instances that follow xi in the sequence x. We explored
different “window sizes” for s-ME, where a “window
size” of W means that Wh = Wf = W , i.e., the W
previous and W following predicted labels are added
to each extended instance. This reduces error rates
substantially, to only 0.71%. This is a 46% reduction
from CRF’s error rate of 1.17%. The improvement is
also statistically significant.3

Used in this way, s-ME is a sort of bidirectional model,
broadly similar to the model proposed by Toutanova et
al for part of speech tagging [12]. We note that here,
as in Toutanova’s results, it is more valuable to use
information about both the previous and future labels
than to consider only previous labels.

Different base learners. Stacked sequential learning
can be applied to any learner; in particular, since the
extended examples are sequential, it can be applied
any sequential learner. We evaluated stacked sequen-
tial CRFs (henceforth s-CRFs) with varying window
sizes on this problem. As shown in Figure 1, s-CRFs
also outperform CRFs, and again, the difference is
both substantial and statistically significant. However,
with large window sizes, there is little difference in per-
formance between s-CRF and s-ME.

3.3 Discussion

A graphical view of a MEMMs is shown in Part(a) of
Figure 2. We use the usual convention in which nodes
for known values are shaded. Each node is associated
with a maximum-entropy conditional model which de-
fines a probability distribution given its input values.

Part (b) of the figure presents a similar graphical view
of the classifier learned by sequential stacking. (The

3Specifically, a two-tailed paired t-test rejects with >
95% confidence the null hypothesis that the difference in
error rate between s-ME and CRF on a randomly selected
sequence x has a mean of zero.

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

^^^

Yi-1 Yi Yi+1

(a) Maximum-entropy Markov model (MEMM) (b) Sequential stacking

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

^^^

Yi-1 Yi Yi+1

Xi-2

Yi-2

^

Yi-2

Xi+1

Yi+1

^

Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

^^^

Yi-1 Yi Yi+1

Yi-1 Yi Yi+1

^̂^̂^̂

(c) Sequential stacking with width W = 2 (d) Two-level sequential stacking

Figure 2: Graphical views of alternative sequential-stacking schemes.

figure shows sequential stacking for the default setting
of Wh = 1 and Wf = 0.) Inference in this model is
done in two stages: first the middle layer is inferred
from the bottom later, then the top layer is inferred
from the middle layer. The nodes in the middle layer
are partly shaded to indicate that their hybrid status—
they are considered outputs by the model f , and inputs
by the model f ′.

One way to interpret the hybrid layer is as a means of
making the inference more robust. If the middle-layer
nodes were treated as ordinary unobserved variables,
the top-layer conditional model (f ′) would rely heavily
on the confidence assessments of the lower-layer model
(f). Forcing f ′ treat these variables as observed quan-
tities allows f ′ to develop its own model of how the ŷ
predictions made by f correlate with the actual out-
puts y. This allows f ′ to accept or downweight f ’s
predictions, as appropriate. As suggested by the dot-
ted line in the figure, stacking conceptually creates a

“firewall” between f and f ′, insulating f ′ from possi-
ble errors in confidence made by f .

Part (c) of the figure shows a sequential stacking model
with a window of Wh = Wf = 2. To simplify the
figure, only the edges that eventually lead to the node
Yi are shown.

Part (d) of the figure shows another plausible exten-
sion of sequential stacking, in which each ŷ is replaced
with a better approximation of y—namely, the output
of sequential stacking itself. (Again to simplify the fig-
ure, a minimal set of arcs are shown, in this case for
stacking with Wh = 1 and Wf = −1.) This “deeper”
stacking scheme can be implemented quite easily, for
instance by applying the sequential stacking scheme
to the base learner s-ME. However, our initial experi-
ments were discouraging: for instance, the depth-two
learner s-(s-ME) has a slightly higher error rate than
s-ME (3.04%). The limited amount of training data
available for the lowest-level models may be an issue:

Task MEMM ME CRF s-ME s-CRF
A/aigen 53.61 8.02 20.35 6.91 5.78
A/ainn 70.09 6.61 2.14 3.65 1.67
A/aix 13.86 5.02 6.83 4.59 11.79
T/aigen 0.30 2.60 2.39 1.92 0.00
T/ainn 1.36 1.39 0.28 0.00 0.28
T/aix 3.51 1.25 5.26 0.05 4.44
1/video 11.39 12.66 12.66 12.66 13.92
2/video 8.86 8.86 7.59 3.80 7.59
mailsig 31.83 3.47 1.17 1.08 0.77

Table 3: Comparision of different sequential algo-
rithms on a set of nine benchmark tasks.

with K = 5, for instance, only 64% of the total data
is available on the lowest-level cross-validation runs.

To conclude our discussion, we note that as described,
sequential stacking increases run-time of the base
learning method by approximately a constant factor of
K + 2. (To see this, note sequential stacking requires
training K+2 classifiers: the classifiers f1, . . . , fK used
in cross-validation, and the final classifiers f and f ′.)
When data is plentiful but training time is limited, it
is also possible to simply split the original dataset S
into two disjoint halves S1 and S2, and train two clas-
sifiers f and f ′ from S1 and S′2 respectively (where S′2
is S2, extended with the predictions produced by f).
This scheme leaves training time approximately un-
changed for a linear-time base learner, and decreases
training time for any base learner that requires super-
linear time.

4 Experimental Results

4.1 Additional Problems

We also evaluated non-sequential ME, MEMMs,
CRFs, s-ME, and s-CRFs on several other sequen-
tial partitioning tasks. For stacking, we used K = 5
and a window size of Wh = Wf = 5 on all problems.
These were the only parameter values explored in this
section, and no changes were made to the sequen-
tial stacking algorithm, which was developed based on
observations made from the signature-detection task
only.

One set of tasks involved classifying lines from FAQ
documents with labels like “header”, “question”, “an-
swer”, and “trailer”. We used the features adopted
by McCallum et al [9] and the three tasks (ai-general,
ai-neural-nets, and aix) adopted by Dietterich et al
[5]. The data consists of 5-7 long sequences, each se-
quence corresponding to a single FAQ document; in
total, each task contains between 8,965 aand 12,757
labeled lines. Our current implementation of sequen-

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

E
rr

or
: S

ta
ck

ed
 M

ax
en

t

Error: other learner

vs Maxent
vs MEMM

vs CRF
x=y

Figure 3: Comparision of the error rates for s-ME with
the error rates of ME, MEMM, and CRFs.

tial stacking only supports binary labels, so we consid-
ered the two labels “trailer” (T) and “answer” (A) as
separate tasks for each FAQ, leading to a total of six
new benchmarks.

Another set of tasks were video segmentation tasks, in
which the goal is to take a sequence of video “shots”
(a sequence of adjacent frames taken from one cam-
era) and classify them into categories such as “an-
chor”, “news” and “weather”. This dataset contains
12 sequences, each corresponding to a single video clip.
There are a total of 418 shots, and about 700 fea-
tures, which are produced by applying LDA to a 5x5,
125-bin RGB color histogram of the central frame of
the shot. (This data was provided by Yik-Cheung
Tam and Ming-yu Chen.) We constructed two sep-
arate video partitioning tasks, corresponding to the
two most common labels.

All eight of these additional tasks are similar to the
signature-detection task in that they contain long runs
of identical labels, leading to strong regularities in con-
structed history features. Error rates for the learning
methods on these eight tasks, in addition to the previ-
ous signature-detection task, are shown in Table 3. In
each case a single train/test split was used to evaluate
error rates. The bold-faced entries are the lowest error
rate on a row.

We observe that MEMMs suffer extremely high error
rates on two of the new tasks (finding “answer” lines
for ai-general and ai-neural-nets), suggesting that the
“anomolous” behavior shown in signature-detection
may not be uncommon, at least in sequential parti-
tioning tasks.

Also, comparing s-ME to ME, we see that s-ME im-
proves the error rate in 8 of 9 tasks, and leaves it un-
changed once. Furthermore, s-ME has a lower error

Task VP VPHMM s-VP s-VPHMM
A/aigen 7.87 12.09 7.33 12.09
A/ainn 6.59 10.26 3.76 10.26
A/aix 5.50 4.86 3.61 5.95
J/aigen 1.68 2.16 0.18 2.16
J/ainn 1.44 1.93 0.19 1.93
J/aix 3.40 1.95 1.16 1.01
1/video 11.39 13.92 11.39 11.39
2/video 6.33 25.32 3.80 6.33
mailsig 3.40 1.95 1.16 1.01

Table 4: Comparision of different sequential algo-
rithms on a set of nine benchmark tasks.

rate than CRFs 7 of 9 times, and has the same error
rate once. There is only one case in which MEMMs
have a lower error rate than s-ME.

Overall, s-ME seems to be preferable to either of three
older approaches (ME, MEMMs, and CRFS). This is
made somewhat more apparent by the scatter plot of
Figure 3. On this plot, each point is placed so the
y-axis position is the error of s-ME, and the x-axis
position is the error of an earlier learner; thus points
below the line y = x are cases where s-ME outperforms
another learner. (For readability, the range of the x
axis is truncated—it does not include the highest error
rates of MEMM.)

Stacking also improves CRF on some problems, but
the effect is not as consistent: s-CRF improves the
error rate on 5 of 9 tasks, leaves it unchanged twice,
and increases the error rate twice. In the table, one of
the two stacked learners has the lowest error rate on 8
of the 9 tasks.

4.2 Additional Base Learners

We conducted the same experiments with two margin-
based base learners: the non-sequential voted percep-
tron algorithm (VP) [6] and a voted-perceptron based
training scheme for HMMs proposed by Collins (VP-
HMMs) [3]. Table 4 shows the results for these meth-
ods, and their sequentially-stacked versions. Both the
sequential and non-sequential voted perceptrons were
run for 20 epochs.

In this case, s-VP outperforms or ties both VP and
VPHMM on all nine problems. The s-VPHMM has
lower error rate than the VPHMM 4 times, a higher
error rate once, and the same error rate 4 times.

There does not seem to be any clear pattern in the rel-
ative performance between s-ME and s-VP—neither
method consistently outperforms the other. Nor does
any clear pattern appear in the relative performance of
s-CRF and s-VPHMM. This is not unexpected, since

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

E
rr

or
: S

ta
ck

ed
 X

Error: Learner X

Voted Perceptron
Maxent

VP-HMM
CRF
y=x

Figure 4: Comparision of the error rates various algo-
rithms with and without sequential stacking.

Method W-L-T null confidence
A s-A vs. A hypothesis rejected

ME 8-0-1 E[∆(A)]≥0 >0.98
VP 8-0-1 E[∆(A)]≥0 >0.98

VPHMM 4-1-4 E[∆(A)]>0 >0.98
CRF 5-2-2 E[∆(A)]>0 >0.92

Table 5: Comparison of stacked vs unstacked learners,
using a one-tailed sign test on error rates obtained on
the nine benchmark problems. Here ∆(A)=error(s-A)-
error(A), i.e., the difference in errors between s-A and
A on a randomly selected task.

in practice, it is often the case that probabilistic meth-
ods work best on some problems, and margin-based
methods work best on others.

4.3 Overview of results

An overview of the improvements obtained by sequen-
tial stacking on these problems is shown in Figure 4
and Table 5. The scatter plot shows the error rate
of ME plotted against the error rate of ME, the er-
ror rate of s-VP plotted against VP, and similarly for
s-VPHMM vs VPHMM and CRFS vs s-CRFs.

The plot shows a plausible pattern: sequential stacking
nearly always improves the performance on the non-
sequential learners (ME and VP) but improves per-
formance of the sequential learners (CRFs and VPH-
MMs) less consistently. This pattern is confirmed by
a series of one-tailed sign tests performed on pairs of
learners, which are summarized in Table 5.

The sign test does not consider the amounts by which
error rates are changed. From the figures and tables,
it is clear that when error rates are lowered, they are
often lowered substantially. However, even for CRFs,

the error rate is only once raised by more than a very
small proportion (for the “A/aix” benchmark).

5 Conclusions

Sequential partitioning tasks are sequential classifica-
tion tasks characterized by long runs of identical la-
bels: examples of these tasks include document analy-
sis, video segmentation, and gene finding. In this pa-
per, we have evaluated the performance of certain well-
studied sequential probabilistic learners to sequential
partitioning tasks. It was observed that MEMMs
sometimes obtain extremely high error rates. Error
analysis suggests that this problem is neither due to
“label bias” [8] nor “observation bias” [7], but to a
mismatch between the data used to train the MEMM’s
local model, and the data on which the MEMM’s lo-
cal model is tested. In particular, since MEMMs are
trained on “true” labels and tested on “predicted” la-
bels, the strong correlations between adjacent labels
associated sequential partitioning tasks can be mis-
leading to the MEMM’s learning method.

Motivated by these issues, we derived a novel method
in which cross-validation is used correct this mis-
match. The end result is a meta-learning scheme
called stacked sequential learning . Sequential stack-
ing is simple to implement, can be applied to virtu-
ally any base learner, and imposes an constant over-
head in learning time (the constant being the number
of cross-validation folds plus two). In experiments on
several partitioning tasks, sequential stacking consis-
tently improves the performance of two non-sequential
base learners, often dramatically. On our set of bench-
mark problems, sequential stacking with a maximum-
entropy learner as the base learner outperforms CRFs
7 of 9 times, and ties once. Perhaps more surprisingly,
sequential stacking also often improves performance
of learners specifically designed for sequential tasks,
such as conditional random fields and discriminately
trained HMMs.

Some initial experiments on a named entity recogni-
tion problem suggest that sequential stacking does not
improve performance on non-partitioning problems;
however, in future work, we plan to explore this issue
with more detailed experimentation. We also plan to
extend our implementation to handle non-binary label
sets.

Acknowledgements

The author wishes to thank many friends and col-
leagues for input, in particular Vitor Carvalho and
David McAllister. He is also grateful to Yik-Cheung
Tam and Ming-yu Chen for providing the video-

segmentation data. This work was supported by
grants from the Information Processing Technology
Office (IPTO) of the Defense Advanced Research
Projects Agency (DARPA).

References

[1] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A
maximum entropy approach to natural language pro-
cessing. Comput. Linguist., 22(1):39–71, 1996.

[2] V. Carvalho and W. W. Cohen. Learning to extract
signature and reply lines from email. In Proceedings of
the Conference on Email and Anti-Spam 2004, Moun-
tain View, California, 2004.

[3] M. Collins. Discriminative training methods for hid-
den markov models: Theory and experiments with
perceptron algorithms. In Empirical Methods in Nat-
ural Language Processing (EMNLP), 2002.

[4] T. G. Dietterich. Machine learning for sequential data:
A review. In Structural, Syntactic, and Statistical Pat-
tern Recognition, pages 15–30. Springer Verlag, New
York, 2002.

[5] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov.
Training conditional random fields via gradient tree
boosting. In Proceedings of the 21th International
Conference on Machine Learning (ICML), 2004.

[6] Y. Freund and R. E. Schapire. Large margin classifica-
tion using the perceptron algorithm. In Computational
Learing Theory, pages 209–217, 1998.

[7] D. Klein and C. D. Manning. Conditional structure
versus conditional estimation in nlp models. In Work-
shop on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2002.

[8] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the In-
ternational Conference on Machine Learning (ICML-
2001), Williams, MA, 2001.

[9] A. McCallum, D. Freitag, and F. Pereira. Maxi-
mum entropy markov models for information extrac-
tion and segmentation. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML-2000),
pages 591–598, Palo Alto, CA, 2000.

[10] Minorthird: Methods for identifying names
and ontological relations in text using heuris-
tics for inducing regularities from data.
http://minorthird.sourceforge.net, 2004.

[11] A. Ratnaparkhi. Learning to parse natural language
with maximum entropy models. Machine Learning,
34, 1999.

[12] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-rich part-of-speech tagging with
a cyclic dependency network. In Proceedings of HLT-
NAACL 2003, 2003.

[13] D. H. Wolpert. Stacked generalization. Neural Net-
works, 5:241–259, 1992.

